Source code for mambular.configs.mambular_config

from collections.abc import Callable
from dataclasses import dataclass, field
import torch.nn as nn
from .base_config import BaseConfig


[docs]@dataclass class DefaultMambularConfig(BaseConfig): """Configuration class for the Default Mambular model with predefined hyperparameters. Parameters ---------- d_model : int, default=64 Dimensionality of the model. n_layers : int, default=4 Number of layers in the model. expand_factor : int, default=2 Expansion factor for the feed-forward layers. bias : bool, default=False Whether to use bias in the linear layers. dropout : float, default=0.0 Dropout rate for regularization. d_conv : int, default=4 Size of convolution over columns. dilation : int, default=1 Dilation factor for the convolution. dt_rank : str, default="auto" Rank of the decision tree used in the model. d_state : int, default=128 Dimensionality of the state in recurrent layers. dt_scale : float, default=1.0 Scaling factor for decision tree parameters. dt_init : str, default="random" Initialization method for decision tree parameters. dt_max : float, default=0.1 Maximum value for decision tree initialization. dt_min : float, default=1e-04 Minimum value for decision tree initialization. dt_init_floor : float, default=1e-04 Floor value for decision tree initialization. norm : str, default="RMSNorm" Type of normalization used ('RMSNorm', etc.). activation : callable, default=nn.SiLU() Activation function for the model. shuffle_embeddings : bool, default=False Whether to shuffle embeddings before being passed to Mamba layers. head_layer_sizes : list, default=() Sizes of the layers in the model's head. head_dropout : float, default=0.5 Dropout rate for the head layers. head_skip_layers : bool, default=False Whether to skip layers in the head. head_activation : callable, default=nn.SELU() Activation function for the head layers. head_use_batch_norm : bool, default=False Whether to use batch normalization in the head layers. pooling_method : str, default="avg" Pooling method to use ('avg', 'max', etc.). bidirectional : bool, default=False Whether to process data bidirectionally. use_learnable_interaction : bool, default=False Whether to use learnable feature interactions before passing through Mamba blocks. use_cls : bool, default=False Whether to append a CLS token to the input sequences. use_pscan : bool, default=False Whether to use PSCAN for the state-space model. mamba_version : str, default="mamba-torch" Version of the Mamba model to use ('mamba-torch', 'mamba1', 'mamba2'). conv_bias : bool, default=False Whether to use a bias in the 1D convolution before each mamba block AD_weight_decay: bool = True Whether to use weight decay als for the A and D matrices in Mamba BC_layer_norm: bool = False Whether to use layer norm on the B and C matrices """ # Architecture Parameters d_model: int = 64 n_layers: int = 4 d_conv: int = 4 dilation: int = 1 expand_factor: int = 2 bias: bool = False dropout: float = 0.0 dt_rank: str = "auto" d_state: int = 128 dt_scale: float = 1.0 dt_init: str = "random" dt_max: float = 0.1 dt_min: float = 1e-04 dt_init_floor: float = 1e-04 norm: str = "RMSNorm" activation: Callable = nn.SiLU() # noqa: RUF009 conv_bias: bool = False AD_weight_decay: bool = True BC_layer_norm: bool = False # Embedding Parameters shuffle_embeddings: bool = False # Head Parameters head_layer_sizes: list = field(default_factory=list) head_dropout: float = 0.5 head_skip_layers: bool = False head_activation: Callable = nn.SELU() # noqa: RUF009 head_use_batch_norm: bool = False # Additional Features pooling_method: str = "avg" bidirectional: bool = False use_learnable_interaction: bool = False use_cls: bool = False use_pscan: bool = False # Mamba Version mamba_version: str = "mamba-torch"