Source code for mambular.configs.mambatab_config

from collections.abc import Callable
from dataclasses import dataclass, field
import torch.nn as nn
from .base_config import BaseConfig


[docs]@dataclass class DefaultMambaTabConfig(BaseConfig): """Configuration class for the Default MambaTab model with predefined hyperparameters. Parameters ---------- d_model : int, default=64 Dimensionality of the model. n_layers : int, default=1 Number of layers in the model. expand_factor : int, default=2 Expansion factor for the feed-forward layers. bias : bool, default=False Whether to use bias in the linear layers. d_conv : int, default=16 Dimensionality of the convolutional layers. conv_bias : bool, default=True Whether to use bias in the convolutional layers. dropout : float, default=0.05 Dropout rate for regularization. dt_rank : str, default="auto" Rank of the decision tree used in the model. d_state : int, default=128 Dimensionality of the state in recurrent layers. dt_scale : float, default=1.0 Scaling factor for the decision tree. dt_init : str, default="random" Initialization method for the decision tree. dt_max : float, default=0.1 Maximum value for decision tree initialization. dt_min : float, default=1e-04 Minimum value for decision tree initialization. dt_init_floor : float, default=1e-04 Floor value for decision tree initialization. activation : callable, default=nn.ReLU() Activation function for the model. axis : int, default=1 Axis along which operations are applied, if applicable. head_layer_sizes : list, default=() Sizes of the fully connected layers in the model's head. head_dropout : float, default=0.0 Dropout rate for the head layers. head_skip_layers : bool, default=False Whether to skip layers in the head. head_activation : callable, default=nn.ReLU() Activation function for the head layers. head_use_batch_norm : bool, default=False Whether to use batch normalization in the head layers. norm : str, default="LayerNorm" Type of normalization to be used ('LayerNorm', 'RMSNorm', etc.). use_pscan : bool, default=False Whether to use PSCAN for the state-space model. mamba_version : str, default="mamba-torch" Version of the Mamba model to use ('mamba-torch', 'mamba1', 'mamba2'). bidirectional : bool, default=False Whether to process data bidirectionally. """ # Architecture Parameters d_model: int = 64 n_layers: int = 1 expand_factor: int = 2 bias: bool = False d_conv: int = 16 conv_bias: bool = True dropout: float = 0.05 dt_rank: str = "auto" d_state: int = 128 dt_scale: float = 1.0 dt_init: str = "random" dt_max: float = 0.1 dt_min: float = 1e-04 dt_init_floor: float = 1e-04 activation: Callable = nn.ReLU() # noqa: RUF009 axis: int = 1 # Head Parameters head_layer_sizes: list = field(default_factory=list) head_dropout: float = 0.0 head_skip_layers: bool = False head_activation: Callable = nn.ReLU() # noqa: RUF009 head_use_batch_norm: bool = False # Additional Features norm: str = "LayerNorm" use_pscan: bool = False mamba_version: str = "mamba-torch" bidirectional: bool = False